If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-85=0
a = 1; b = 3; c = -85;
Δ = b2-4ac
Δ = 32-4·1·(-85)
Δ = 349
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{349}}{2*1}=\frac{-3-\sqrt{349}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{349}}{2*1}=\frac{-3+\sqrt{349}}{2} $
| 32=12b—4 | | 2x-18=1x+4 | | 2(5x+3)=40 | | 8+5d=-7 | | 2(x+3)=#x-4 | | 3x+4=6x+15 | | 35=(x+5) | | (x-85)(x+85)=0 | | 5x+2x=3-24 | | 17x2+70x=552 | | 30 - 30 =3x 2x | | (2*x-4)*(x-5)=0 | | 4x-17=3x+23 | | x^2-2x=-x^2+2 | | 19r+r=1379 | | 41x-6=45x+16 | | 19r*r=1379 | | 5x=+5 | | 73=365x/100000 | | 73=x*365/100000 | | -6w+4=2(w-6) | | 7x-4=10+x | | 12x2-6x+9=0 | | 12x2+6x-9=0 | | S=80+64t-16t^2=0 | | 12x2+6-9=0 | | 5x-36+3=8 | | 3x–10=2x+13 | | x+(x+40)+(x-65)=180 | | 51x=×/2-× | | 4-3h=3h | | 4(5+k))=36 |